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v = 0.2, kv’ = 0.3, y = 6, no = 0.067, tgcp = 0.8. The valuesx’ = (xtg(p)-’ (x0 = ctgcp, xSx0) are plotted along 
the abscissa. 

The numerical results obtained show that the second approximation of the temperature problem of the 
deformation of a thin-walled conical pipe provides very high accuracy even at large aperture angles of the pipe 
cp (for example when tgcp = 0.8). The first (asymptotic) approximation describes the stress state of a thin-walled 
pipe with small aperture angle with sufficient accuracy. 

In the case of thick-walled pipes, the second approximation is found to provide sufficient accuracy. 
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Using the averaging method [l, 21, a procedure is proposed for determining accurate values of the effective 

moduli of elasticity, piezoelectric moduli and permittivities of piezoactive composites of periodic structure 

with unidirectional fibres having the form of a circular cylinder. The accurate values are obtained by the 

analytical solution of the problems in a periodicity cell, 

THE AVERAGING method has previously been used to determine the effective properties of layered 
piezoelectric composites in [3, 41. To investigate the effect of the properties of fibre piezoelectric 
composites approximate formulas have been proposed based on a statistical approach [5] and on the 
method of matching and variational estimates [6]. 

1. Consider the non-homogeneous problem of the theory of electro-elasticity for a piezoactive 
composite with a periodic structure. It is described by the following system of equations [7] and 
boundary conditions: 

V .a+F=O. V -D=O 

U=C -5 --Vu+eT 5 .Vcp ( 1 e ( ) c (1.1) 

t Prikl. Mat. Mekh. Vol. 56, No. 3, pp. 501-509, 1992. 
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D-e +- .-Vu--C& + -Vcp 
( 1 ( J 

48 ,=ll*, a-n] *r=d0 

(pI~(p*, D.nls,=xo (1.2) 

Here u is the displacement vector, cp is the electric potential, F is the vector of volume forces, CT is 
the stress tensor, D is the electric-induction vector, C is the tensor of the moduli of elasticity with 
components C,,,, e is the tensor of the piezoelectric moduli with components ekii, 5% is the 
permittivity tensor with components Cekn , n is the unit vector of the external normal to the boundary 
S of the region occupied by the composite, Sr is the part of the boundary S on which the 
displacements are specified, S, = s\sr is the part of the boundary on which the stresses are specified, 
Ss is the part of the boundary S coated with electrodes on which the potential is specified, and 
S, = SY’& is the part of the boundary free from electrode while E defines the characteristic linear 
dimensions of the periodicity cell relative to the linear dimensions of the composite. 

We will associate with the periodicity cell a local system of coordinates t(<r, c2, ij3), i& = x&. 
Then using the average method [ 1,2] the solution of problem (1. l), (1.2) will be sought in the form 
of the expansions 

u’=u*(5) +eti, (.z, t)+e”u*(s, g) + f - . 

0 -3) 
cp=-cpo(z)+ecp, (2, U+e*q+&, 6) + - . . 

substitution of which into Eq. (1. l), taking into account the equation V = V, + e-r 0, , where V, , 0, 
are Nabla-operators in the system x and 5, respectively, leads to the sequence of equations (S, is the 
Kronecker delta) 

V,.q_,+\ t~ukfG1kF=O 

V,.D,_,-t-V,.D,=O, k=O, 1, 2,. . . 
(1.4) 

Here 

are the corresponding components in the expansion in terms of the parameter E of the stress tensor 
u and the electric-induction vector D. In (1.4) the components with a negative index must be taken 
to be equal to zero. 

Note that U&Z, $), (Pi, &(x, E), Dk(x, Q, (k3 1) are the functions that are periodic with respect to 
the fast coordinate 5. 

The problem at the zeroth stage (k = 0) ( we will call it the problem in a cell) can be represented in 
the form 

vr’u*=o. v~~D*=O (I-6) 

and consists of finding periodic functions ul, cpl in the periodicity cell. To do this we will represent ~1 
and ‘pl in the form 

u~(z, %,--N(%)..V,U~+R(%,.V~O 
(1.7) 

~*(z,%)~s(%)~*v,u*+~(%).V~cp, 

where N(E), W, S(S),*(k) are tensor functions, periodic in 5, of the third, second, second and first 

ranks, respectively. 
Using relations (1.5) we can write the following representations: 

a,,=- (C+C.. VEN+eT. V&J).. V,u,+ (eT+C. * VcR+e*.VtQI) - Vr(po 

De- (e+easVtN-%, V&l). .V,pa- @b-e*. VtR+%V@) .Ve, 
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Equations (1.6) will then be satisfied for any uo(x), cpo (x) if the following two groups of equalities 
hold: 

Vt.(e,.VtR-~=V,Q)-ce>~U (1.10) 

IIence, the problem in a cell has been reduced to determining periodic local functions Nkpq(Q, 
S,,(e) from the system of equations (1.9) 

(CijklNkD(I,I+ekijS*Q.k).j=-CYPQ., 

(1.11) 

and the functions ip,, (@, @q(t) from system (1.10) 

(cijkIRkQ,lfekijQ)Q,k) *jam eQij,jt (ekij~iQ,j-~k~~Q,‘, ) .k=%kgrk 

in the periodicity cell. 

(1.12) 

For Eqs (1.14) and (1.12) to be solvable we must require that the following condition is satisfied: 

(N*pP(E))=<SPQ(t)>=<RP*(e) >==((f)P(g))=O (1.13) 

where the angle brackets denote the average over the volume of the periodicity cell. In addition to 
conditions (1.131, it is necessary to add to (1.11) and (1.12) the conditions of continuity at the 
boundary of a fibre and of the displacement matrix, the stress vector, the electric potential and the 
normal component of the e~ect~c-induction vector 

where the square brackets denote jumps in the vafues of the quantities included in them at the 
interface between phases, and nj are the components of the unit vector of the external normal to the 
fibre surface. 

After solving problems (1.11) and (1.12) the effective moduh of the composite can be obtained. 
To do this we consider the system of equations (1.4) with k = 1 and we integrate them over the 
volume of the pe~odicity cell 

V,<qH-~V~~ol)+F=O, V,.<D,>+<V,.D,>-0 (1.16) 

The second terms in (1.16) vanish by virtue of Gauss’ theorem and the conditions of periadicity, 
and hence the macroscopic equations of equilibrium have the form 

V,.a*+F-0, V,.D*-0 (1.17) 

where CT* = (oc), D” = (Da). By comparing this with relations (1.8) we can determine the effective 
properties of the piezoactive composite 
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FIG. 1. 

(1.18) 

2. We will consider a piezoactive composite with a periodic structure having unidirectional fibres 
in the form of a circular cylinder. The x3 axis of a rectangular Cartesian system of coordinates 
x(x1, x2, x3) is chosen to coincide with the direction af the fibres. Henceforth we will assume that 
the section of the periodicity cell by a plane x1x2 is a par~lelogr~m~ the length of one of the sides of 
which is unity, while the length of the other is r (Fig. 1). When r = 1, Q = ~/2 we have a square 
structure while the case Y = 1, Q = IT/~ corresponds to a hexagonal structure. For a square structure 
the maximum volume concentration of inclusions y is 0.78 of the volume of the composite, while for 
the hexagonal structure it is 0.86 of the volume of the composite. 

We will assume that the components of the piezoelectric composite belong to symmetry class 
6mm, while the polarization axis coincides with the directions of the fibres. The defining relations 
from (1.1) can then be represented in the form [7] 

Here we have used the traditional double-index notation of the components of the tensors Cjjkl 
and ekirnm according to which the symmetrical pair of indices is replaced by 1 according to the 
following rule: ii is replaced by i when i = j and by 9 - i - j when i #j. 

If the fibres are made of a piezoactive material, while the binding matrix is a passive dielectric 
(ekfm GO), the piezoelectric composite has the structure l-3 according to the classification in [8]. 
Otherwise, it has a structure 3-1, which includes, in particular, porous ceramics. 

Composites of this structure are widely used in manufacturing piezoelectric transducers with high 
volume piezoelectric sensitivity, low impedance and a uniform amplitude-frequency characteristic 

[8,91. 
For a composite of the chosen structure the unknown functions NQ,~, Spq ) &q ) Qq depend on two 

coordinates E1 , & and are found from problems (1.21), (1.14) and (1.12) and (1.15), which we 
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denote by Ip4 and J4, respectively. In view of the symmetry of C,,, , ekpq with respect to the last two 
indices it is sufficient to solve six problems &, for p G 4 and three problems J, . For brevity, in what 
folows we will omit the last pair of indices on the functions N&q, S,, and the last index on the 
functions Rkq , aq. 

From the solution of the problems Z,,(p = q = @ = 1, 2, 3), which, taking relations (2.1) into 
account, we will write in the form 

(G,r!NI,~+C,p).,+ (CWNLJ) ,2=0 
(2.2) 

we can find, using (l.lS), the effective values of the non-zero parameters: 

C,b*=(e,s+C,,N,,,+C*~~*,~~ 

C,b+=(C2P+C12N*,l+C1I~2.2) 

(2.3) 

The solution of problem Z12 

(c*,~N~,,+czz),,+ (C2*LLNd,Z=o 

enables us to determine 

C***=(Cr*+Cls(N,**+N,,)>, e~s*=(esl WI.,+&,,)) 

By solving problems Z,, (0~ = 1, 2) 

(C,,N,,+e,,S,I+G,,C,,),,+(C,,N,,+e,,S,,+G,,C,,),*=O 

(e~~~~2,-~~,S,,+d,~e~2),,~(e,,N22-u;,,S,2+62ae~s),2=0, N,=N2=0 

we can find the following effective parameters: 

C,,*=<CI,+C,,Ns,,+e,~S,,> 
C,,*=4C~4N,,+e,,S,z> 

6, *=(ers+ersNs.,-~,,S,,) 

e22 *=(eisNs2-&S,2) (ad) 

C,,S=~CI,+C,,N2.2+e,2S.2~ 

eti*=e;<et~N2,,-~ d.2 
e2r*=~e,r+e,sN2,2-~,,S,2~ (a=Zf 

(2.4) 

(2.5) 

(2.6) 

From the solution of the problems 1, (a = 1, 2), which are identical in form with Eqs (2.6), in 
which the functions N3 and S are replaced by R3 and @, while the coefficients on the Kronecker 
symbols C, and e15 are replaced by e15 and -%11 respectively, we find 

8 rl*=<$tl+~tl~,,-e,~2.1) 
‘t ~2+=<%Ql,2-eJ?2,2) (a=i) 

$22*=<8,,+(E;,,(D,2-e~~R*,2) (a-2) 
(2.8) 
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We can find the effective permittivity %,& from the formula 

8,,*=(~6;s3- UL-e,,&,,) (2.9) 

where the functions RI and R2 are the solutions of problem 13, which is obtained from (2.2) by 
replacing Nk by R,, S by @ and Cm, CZp by e3] . 

3. To solve the problems IP9 and .J4 we will use the methods of the theory of functions of a 
complex variable [lo]. For problems IBP, Z12, J3 the solutions can be expressed in terms of the 
functions 

(3.1) 

where z = & + i&, c(z) is W eierstrass’ zeta-function, Q(Z) is Natanzon’s function [lo], au, b. , ak, 
bk, Ck, dk are certain complex constants, and Z* represents summation over odd values of the 
index. Here cpl(z), G,(z) are functions which relate to the region of the binding material, while 
cp2(z) and @z(z) relate to the region of the fibre containing the origin of coordinates (Fig. 1). 

The coefficients a0 and bo are expressed in terms of al and 6, from the condition for the required 
functions to be periodic ill]. The coefficients a k, bk , Ck and dk (k 2 1) are determined from the 
infinite system of linear algebraic equations obtained by satisfying the matching conditions on the 
interface between the media (1.14) and (1.15). This infinite system belongs to the normal type and 
its form is known [I 11. 

After solving the linear system of aigebraic equations, the effective characteristics of the 
piezoelectric composite can be found in terms of the coefficients al and Ci from the formulas 

(3.2) 

e36*=(e,+y[ e,,] Hl, A&;*=C&y Im A, 

CJfi 
+ =-y[ e,,] He A?., I *=.5!$:3>+y[e3,] ReA, 

I,,(B,=(I~~Ilf-(c*,I)ia. P?(B)=(IC,el+lCzbl)/2 

A,-(l+x,)a,lH. .42=(,x,C,-C,)/C,,2/A, x,-3-4C,,“l(C,,“+C,,“) 

Here and henceforth the subscript denotes which component of the composite the symbol refers 
to: “1” indicates it refers to the binding matrix and “2” indicates that it refers to the material of the 
fibre; the square brackets indicate a jump in the value of the quantity contained within them 
[F]=F’-F? 

For problems Ia3, .l, (0~ = 1, 2) the complex potentials have the form (3.1). In this case, in the 
expression for the functions +t (z) the last sum must be equated to zero. Unlike problems IPa, 112, 
J3, these problems are connected (the non-zero functions S and @ are expressed in terms of the 
potential $I (2)). From the satisfaction of the matching conditions at the interface between the fibre 
and the binding material we can set up an infinite system of algebraic equations for determining the 
complex coefficients uk and b k. From the coel%cients al and bi obtained from the infinite system we 
find the corresponding effective characteristics of the composite from the formulas 
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c55*=ty -7 Re B,, Chl*=-7 Im B, 

e,s*=e,s’ -7 Re BL, eZs*=-y Im B, 

C4,*=C,,‘-7 Im B,, et,*=-7 Re L4 

e,‘ =els’- * 7 Im Br, %,g*=%I,i+7 Re &, 

%&,*=7 Im Bz, %22*=3i,‘+7 Im B, 

B,=2 (Ch“Q1 +4WlR, B,12(e,,‘a,-~,,‘b,)lR 
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WI 

Note that the constants al and C1 in (3.2) and al and bI in (3.3) vary depending on the type of 
problem being solved. 

From the complete matrix of the effective moduli Cii*, ekl*, gmn* obtained we can determine any 
other set of parameters representing the piezoactive medium, in particular the piezoelectric moduli 

d *, the volume piezoelectric modulus dv* = d33* + 2d31*, 
dy/iei3 [ 121, etc. 

the piezoelectric sensitivity g,* = 

4. We will present some results of calculations to determine the effective characteristics of the piezoelectric 
composites considered. 

In Fig. 2 the continuous curves represent the effective characteristics normalized to the corresponding values 
for a piezoactive composite in the case of a porous composite of type 3-l with a hexagonal structure as a 
function of the volume concentration of pores y. We chose PZT4 piezoelectric ceramics [12] as the piezoactive 
matrix. 

The characteristic features of a piezoelectric composite of this kind are the fact that the piezoelectric moduli 
&* and dV* (curves 1 and 2) are practically independent of the volume concentration of pores y, and the 
piezoelectric sensitivity gV* increases sharply as y increases (curve 3). 

Note that the filling of the pores with epoxy resin (Young’s modulus E = 3 GPa, Poisson’s ratio Y = 0.4 and 
permittivity %Wo = 5) does not lead to any qualitative change in this behaviour, and only the quantitative 
features change slightly. 

The dashed curves in Fig. 2 correspond to the effective values for a piezoelectric composite of type 1-3, 
which is a fibre of PZT-4 piezoelectric ceramics in a filler of epoxy resin (hexagonal packing). Along the 
abscissa we have plotted the volume concentration of piezoactive fibres y. 

FIG. 2 
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Typical features of such a composite are the considerable increase in the piezoelectric sensitivity gr, 
(curve 4) for small concentrations of piezoelectric ceramic fibres, the presence of a local maximum in the value 
of the volume piezoelectric modulus &* (curve 5) and a slight dependence of the piezoelectric modulus dJi’ 
(curve 6) on the parameter v over a wide range. 

In addition to calculations of the properties of composites with hexagonal packing we carried out calculations 
for square packing. Note that in both cases the symmetry of the effective properties of the composite is 
identical with the symmetry of the piezoactive component. An exception is the modulus of elasticity Cho* for a 
square structure, which is not equal to (Cii* - C,,*)/2. It was established from calculations that for small 
volume concentrations of the fibres (pores) the effective moduli in both cases are practically identical. The 
difference between them becomes considerable, however, as the volume concentration of the fibres increases. 
For example, for the moduli Cii*, Cia*, &*, e31*, ei5* for y = 0.75 the difference exceeds 25%. 

In conclusion we give some formulas for determining the effective properties of the fibre piezoelectric 
composites considered. The relative error 

A=1OOK)%~(m-m~)/m (3.4) 

for these formulas, which follows from the analytical solution of problems in a periodicity cell does not exceed 
1% over a range of variation of y from 0 to 0.4. In (3.4) m is the accurate value of the modulus and mo is the 
approximate value calculated from formulas which, for example, for the moduli Cs5*, eis* and (eii* have the 
form 

where pi, p2 satisfy the system of equations 

~tlS1+~12B2=~10. 

a2l@l+a22p?-=%o 

in which 

The coefficients ai0 and uzo for determining Css*, ers* have the form 

a,o=C‘r’-C“~, u*0=c,s’-c,5’: 

while for determining %ii * 

a,o=c,~‘-c,SZ, a20=%,,2-8rl 

Other independent moduli can be found from the formulas: 

C,I’=(Cl,)-7p~(l)a~-yp2(~)a2 

C2i*=(C20+ypf(l)al-yp2(lh 

C3t’=tC2c)-y(C2tla2, c3,‘=(c2,)-7[cJila: 

Ca3* =(Cd-y(C2,]*a3, sf+333~=~%2J)+y[e2~12a~ 

e22’=(e22)-7[C2,l[c2,la3 

C2~~=Cs21-7[CbrJ(l+~,)l(i+xlx+a:,:;) 

al=l-(l+n,)/(l+x,x+a:l) 

at= (4-y) (n2-l)p2(l)l(C201a22) 

ait= (l-x)( (x~+5&/97-6&R’) 

a22=2x(l-y)+(x2-i)(1+2y/(~~-l)) 

a22= (l-x){ (n,-5S&r2)7+6S~R‘) 

a2=a2/p2(1). x=C~6*iC16’ 



Piezoactive composites with cylindrical inclusions 423 

The parameter S4 = 3.151212 for a square structure and S4 = 0 for a hexagonal structure. 
The results obtained enable us to predict the effective properties of a unidirectional fibre composite with a 

periodic structure depending on the elastic, electric and geometrical parameters of its components. 
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